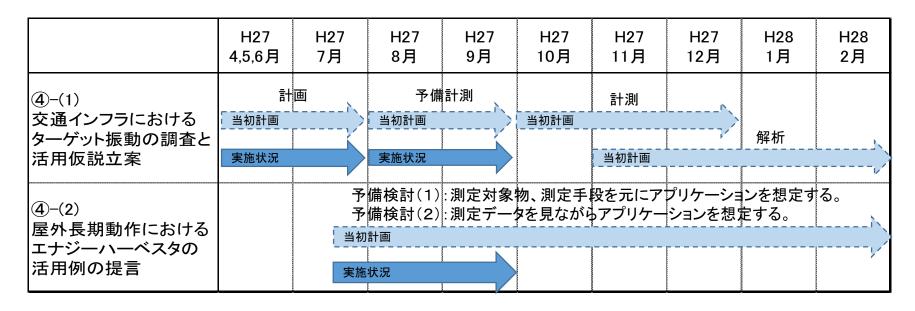


エネルギー・環境新技術先導プログラム/ トリリオンセンサ社会を支える高効率MEMS振動発電 デバイスの研究

第3回高効率MEH推進委員会· 第3回高効率MEH知的財産権分科会


> 平成27年10月5日(月) 14:00 ~ 18:30

技術研究組合NMEMS技術研究機構(MEH)

進行状況

④交通インフラでの振動発電デバイスの導入開発

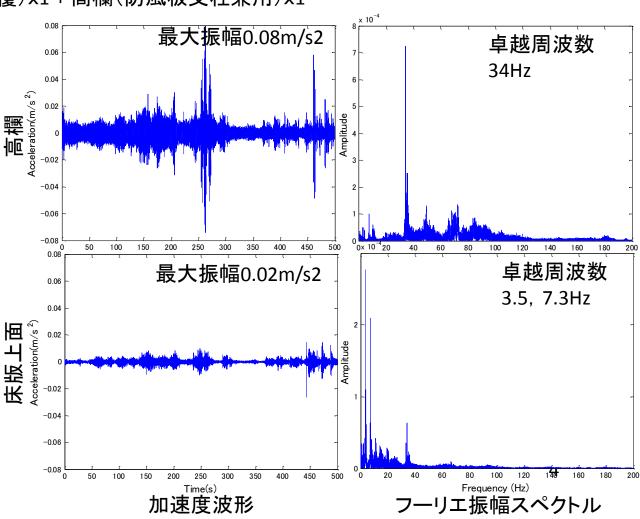
交通振動予備実験

計測対象

- 京都大学桂キャンパス前の照明柱
- 高さ:およそ4m
- 測点:地面から高さ1.5m
- 計測方向:車線方向x1+車線横断方向x1
- センサー: RION PV-87加速度計(共振周波数9000Hz)
- サンプリング:1000Hz

計測対象

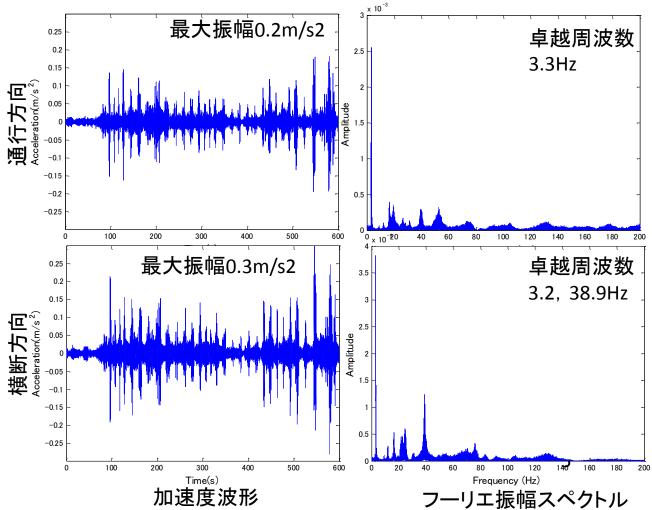
京都大学桂キャンパス前の歩道橋


構造:コンクリート床版橋

• 桁長:32.7m

• 測点:支間中央,床版上面(地覆)x1+高欄(防風板支柱兼用)x1

NMEMS Confidential


インフラ構造物振動計測一風力発電柱

計測対象

- ・ 京都大学桂キャンパス内の風力発電柱
- 高さ:およそ4m
- 測点:地面から高さ1.8m
- 計測方向:通行方向x1+横断方向x1

考察と発電量試算

計測対象	測点, 方向	最大振幅 (m/s^2)	卓越周波数 (Hz)	特徵	
照明柱	高さ1.5m, 車線方向	0.035	4.3;14.7;30.6; 64.6	・車両通過無し時,構造物の固有振動数が卓越;車両通過時,励起振動数も認められる (励起時間3-5秒程)・横断方向の振幅は車線方向より大きい	
	高さ1.5m, 横断方向	0.064	4.3;25.8;77.5		
歩道橋	支間中央, 床版上面	0.02	3.5; 7.3	・周波数は固有振動数のみ ・高欄の振幅は床版より大きい	
	支間中央, 高欄	0.08	34		
風力発電柱	高さ1.8m, 車線方向	0.2	3.3	最大振幅は照明柱より大きい卓越周波数は風車の回転周波数に依存?	
	高さ1.8m, 横断方向	0.3	3.2;38.9		

設置位置	条件	電荷[C]	電荷[C/hr]	電荷[pC/hr]
11- 17-11-15	Q=924,f=150	-2.21E-13	-1.59E-12	-1.59
歩道橋 床版上面	Q=92.4,f=150	-2.42E-13	-1.74E-12	-1.74
冰冰 上四	Q=462,f=75	-1.12E-12	-8.04E-12	-8.04
IF \ Y 1 \ 1	Q=924,f=150	-2.73E-12	-1.96E-11	-19.64
歩道橋 高欄	Q=92.4,f=150	-2.32E-12	-1.67E-11	-16.67
「口」「は」	Q=462,f=75	-1.20E-10	-8.67E-10	-867.02

今後の予定

現場計測(インフラ構造物)

• 京都縦貫高速道路の高架橋,橋梁,トンネルなど

