

エネルギー・環境新技術先導プログラム/ トリリオンセンサ社会を支える高効率MEMS振動発電 デバイスの研究

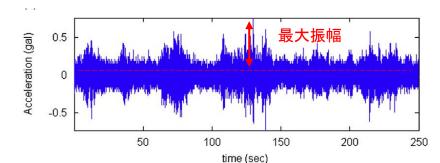
平成26年6月15日(月) 14:00 ~ 18:30

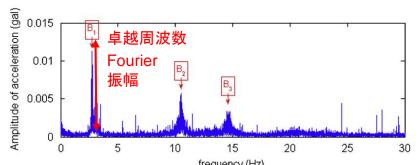
技術研究組合NMEMS技術研究機構(MEH)

報告:ダイキン工業、MMC、京都大学

概要, 年度計画(研究項目D、E)

- ■確認: 実施内容 (実施計画書より)『トリリオンセンサ社会を支える高効率MEMS振動発電デバイスの研究』
 - ④交通インフラでの振動発電デバイスの導入開発(担当:(一財)マイクロマシンセンター)
 - ④-(1) 交通インフラにおけるターゲット振動の調査と活用仮説立案
 - ④-(1-1) 各想定インフラでのセンサ端末設置場所での振動環境を調査する。
 - ④-(1-2) アプリケーションの仮説立案
 - ⑤オフィス・工場等での環境発電デバイスの導入開発(担当:ダイキン工業(株))
 - ⑤-(1) センサネットワーク用の端末の仕様抽出とアプリケーション開発
 - ⑤-(1-1) 各想定環境でのセンサ端末設置場所での振動環境を(周波数、加速度、力)測定する。
 - ⑤-(1-2) アプリケーションの仮説立案
 - ⑤-(2) 待機電力の削減に向けたエナジーハーベスタの活用例の提言


高効率MEH 研究項目	京大・塩谷研 (④、⑤データ解析)	MMC (④交通インフラ)	ダイキン (⑤オフィス・工場)
振動測定方法の立案	0		
振動測定装置の購入/調達	0		
振動測定装置の設置	0	0	0
測定データの解析(見える化)	0		
アプリケーションの仮説立案	0	0	0
最新動向の調査(学会、論文)	0	0	0



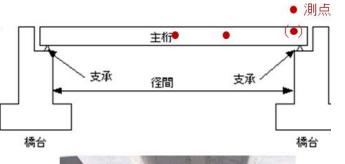
進捗報告(④)

測定計画表

	測定対象	測定方法	測定数	備考
(a)道路、鉄道の橋梁、高架、トンネルなどの構造物における交通振動	橋梁, 高架の部材:梁, 床版等;トンネルの部材: 側壁	加速度計+ポータブ ルデータレコーダ	橋一本3-5測点, 全3本 (コンクリート橋2本, 鋼 橋1本);トンネル1本3-5 測点, 全1本	京都縦貫自動車道,他。
(b) 道路面、線路軌道などの土構造近 傍における交通振動	道路近傍歩道, 側壁	加速度計+ポータブ ルデータレコーダ	一箇所3-5測点, 全3箇 所	京都縦貫自動車道,他。
(c) 道路、鉄道の防音壁、側壁、照明設備、表示設備等の付帯設備における交通振動	防音壁、側壁、照明設 備、表示設備	加速度計+ポータブ ルデータレコーダ	一設備2箇所	京都縦貫自動車道,他。
(d) 上記交通振動の他に自然風、水流などによる常時微振動	橋梁, 高架の部材:梁, 床版等;トンネルの部材: 側壁;付帯設備。		一橋3-5測点,全3橋; 一設備2測点;全4設備	京都縦貫自動車 道,他。

進捗報告(④)

測定対象候補


橋梁, 高架における交通振動

•測定対象

•測点: 1橋3-5測点

•橋梁選定

- ✓ 支間長50-70メートル
- ✓ コンクリート桁橋2本
- ✓ 鋼橋1本
- ✓ アクセス容易
- ✔ 候補:京都縦貫自動 車道,他

トンネルにおける交通振動

- •測定対象
- •測点:3-5点
- •トンネル選定
 - ✓ トンネル1本
 - ✔ アクセス容易
 - ✓ 候補:京都縦貫自動 車道,他

土構造近傍における交通振動

- •測定対象
- •測点:一箇所3-5測点
- •十構造選定
 - ✓ 3箇所
 - ✔ アクセス容易
 - ✓ 候補:京都縦貫自動車道,他

付帯設備における交通振動

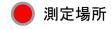
- •測定対象:防音壁, 照明設備, 表示設備, 三種類
- •測点:一種類設備1箇所2測点
- •付帯設備選定
 - ✓ 一種類2箇所
 - ✓ 候補:京都縱貫自動車道, 他

進捗報告(⑤)

測定計画表

・人体の振動、及び、オフィス・工場における装置類の振動を測定する。

	測定対象	測定方法	測定数	備考	
人体の様々な動作時の振動を測定す る	胸、足など	調査中	1~2点	オフィス他 (候補:ダイキン)	
オフィスにおける装置類の振動を測定する	空調室外機	調査中 (交通インフラの 測定方法に準拠)	1~2点	オフィス (候補:ダイキン)	
工場における装置類の振動を測定する	工作機械など	調査中 (交通インフラの 測定方法に準拠)	1~2点	工場 (候補:ダイキン)	


進捗報告(⑤)

測定対象候補

<人体> 観点・・・ウェアラブルセンサの電源として使えないか?(設置に違和感がない場所で)

胸(ポケット)

足(靴)

<装置> 観点・・・異常・故障診断用センサの電源として使えないか?

空調室外機

圧縮機

周辺

ファン周辺

工作機械

軸受周辺

今後の予定(④)

今後の予定(⑤)

2015年度計画

・予備測定⇒詳細測定⇒アプリケーション抽出を順に進める。

	6月	7月	8月	9月	10月	11月	12月	1月	2月
⑤-(1) センサネットワーク用の端末の 仕様抽出とアプリケーション開発	•計測対 ————————————————————————————————————	象の決定	U+ 0 7 /#\						
⑤-(1-1) 各想定環境でのセンサ端末設置場所での振動環境を(周波数、加速度、力)測定する		•振動境	境の予備	則定	→	境の詳細源			
					以到以	·兄 ∨ / □十 小山 //		>	
⑤-(1-2) アプリケーションの仮説立案					・測定結	果を元にア	プリケーシ	vョン候補を →	抽出
								・まとめ	
⑤-(2) 待機電力の削減に向けたエナジーハーベスタの活用例の提言		•主要装	置類の振	動環境の	予備測定				
						置類の振動 れる電力量			
								・まとめ	