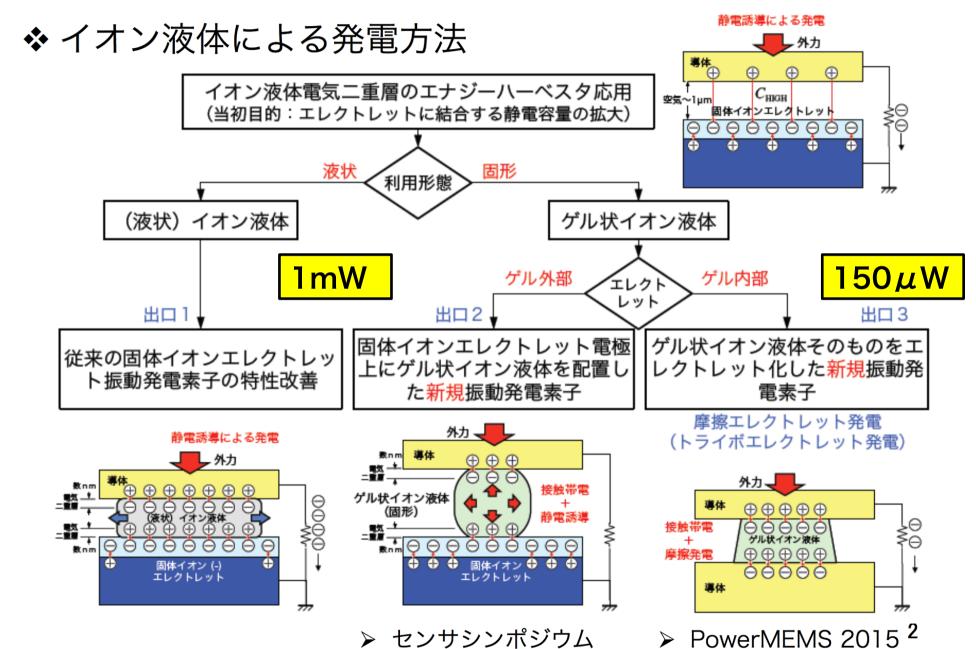


エネルギー・環境新技術先導プログラム/ トリリオンセンサ社会を支える高効率MEMS振動発電 デバイスの研究

平成28年度 第2回高効率MEH研究会

研究項目 : 『 大容量イオン液体可変キャパシタ技術の エナジーハーベスタ応用 』


> 平成28年6月9日(木) 14:00 ~ 17:30

技術研究組合NMEMS技術研究機構(MEH)

研究テーマの概要

NMEMS Confidential

進行状況

②大容量イオン液体可変キャパシタ技術のエナジーハーベスタ応用

	H28 4月	H28 5月	H28 6月	H28 7月	H28 8月	H28 9月	H28 10月	H28 11月	H28 12月	H29 1月	H29 2月
②-(1) イオン液体のエナ ジーハーベスタ応 用検討		27に予定 後はALD				-	を進める.				
②- ②) イオン液体のゲル 化検討	・H27に予定通り設計指針を明らかにした。 ・今後は、新たなイオン液体に対する最適なポリマー配合比な								どを明ら	かにする	5.
②-(3) ゲル化イオン液体 のイオン固定方法 検討		オン液体期高信頼		- ·	一の種類	とその酉	己合比の材)			}

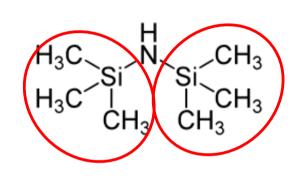
		_						
② 大容量イオン液体可変キャパシタ技術のエナジーハーベスタ応用(鷺宮製作所)				1 1				
②-(1) イオン液体のエナジーハーベスタ応用検討				1 1				
エレクトレット+イオン液体のための保護膜選定	計画	5/1 7/	30					
→Al2O3, HfO2, HMDS, F-SUM, Si3N4, Palyren	実績			1		- 1		
濡れ性と電気二重層形成状態の評価	計画	7/15 10/	30	1 1		- 1		
→保護膜をはさんだ場合の接触角、電気二重層ギャップの把握	実績			1 1		- [
まとめ	計画	11/1 11/3	30	1 1		_ i		
	実績			1 1		<u>i</u>		
②-(2) イオン液体ゲル化の検討				1 1				
ゲル化したイオン液体の機械、電気特性評価	計画	5/15 9/	30					
→ポリマーとイオン液体の配合比率、機械・電気特性の関係評価	実績			<u> </u>				
ゲル化イオン液体の重要なパラメータを把握	計画	6/15 11/	15	1 1				
→ポリマーとイオン液体の配合比、及び硬化条件	実績			1 1		- 1		
まとめ	計画	11/15 12/	15	1 1		-		<u> </u>
	実績			1 1	<u> </u>	- 1		<u> </u>
②一(3) ゲル化したイオン液体のイオン固定(エレクトレット化)検討				1 1		<u>i</u>		
アニオンの固定と、アニオン側電極材料の選定	計画	6/15 7/	30	1				
→アニオン固定ゲル作製によりゲルエレクトレットのモデル化	実績			1 1				
長期高信頼性技術の確立	計画	7/30 12/	30	1 1				
→N2封止パッケージ作製、評価	実績			1 1			\perp	
デバイス化、及びまとめ	計画	11/1 1/	30					-
→デパイス化し、150µW、10Hz以下を実現する.	実績			1 1				<u> </u>

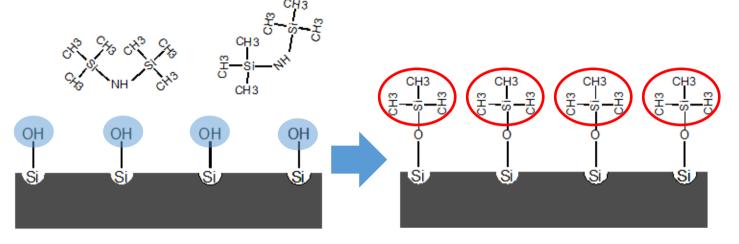
ガントチャートに詳細を記載. 次回の推進委員会に向け内容を整理し進めていく.

本日の内容

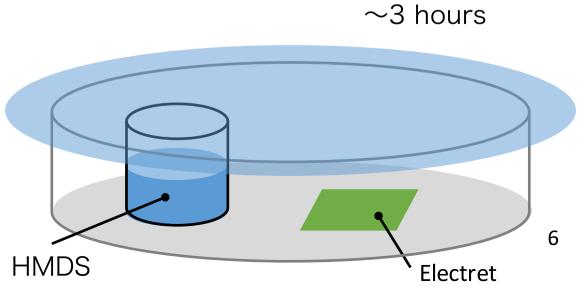
- 固体イオンエレクトレット+イオン液体
 - ➤ エレクトレット保護膜の選定
 - ▶ エレクトレット帯電の実験

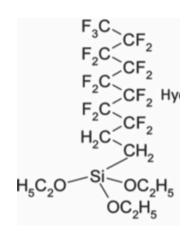
- その他(分析など)
 - ➤ Spring-8, KEKなどを今後活用していく.

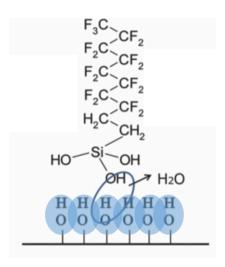


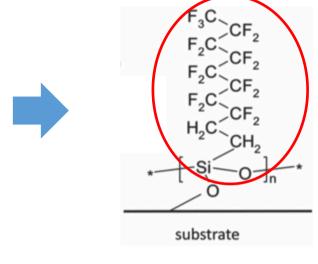

エレクトレット保護膜

		♪子膜:SAM oly Monolayer)	原子層堆積膜:ALD膜 (Atomic Layer Deposition)				
	HMDS	F-SAM	HfO ₂	Al ₂ O ₃			
物質	CH3 	F ₃ C CF_2 F ₂ C CF_2 F ₂ C CF_2 F ₂ C CF_2 CF_2 CF_2 CF_2 CF_2 CF_2 CF_2 CF_2 CF_2 CF_2	Si □=H •-C □-AI •-O	OH OH OH AI O O O			
プロセス	Gas phase reaction	Gas phase reaction	サーマル式	プラズマ式			
厚み	~10 nm	~10 nm	5, 10, 20 nm	5, 10, 20 nm			


【化学反応】

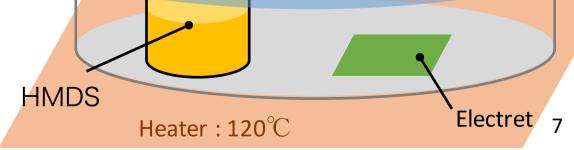

【セットアップ】



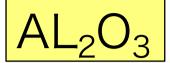


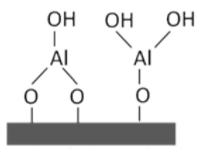
F-SAM

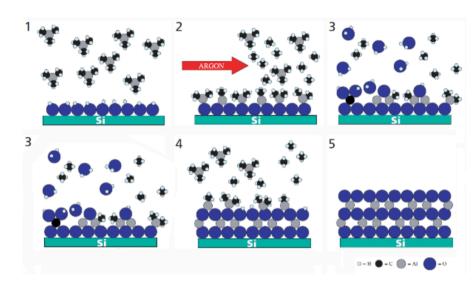
【化学反応】



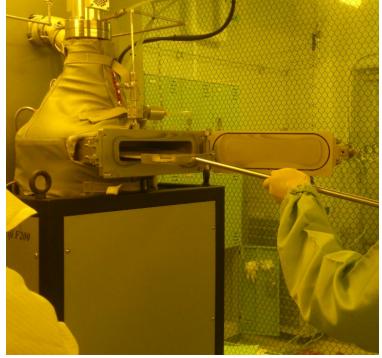
【セットアップ】

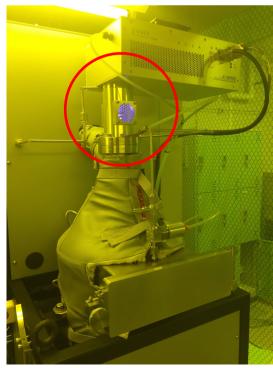




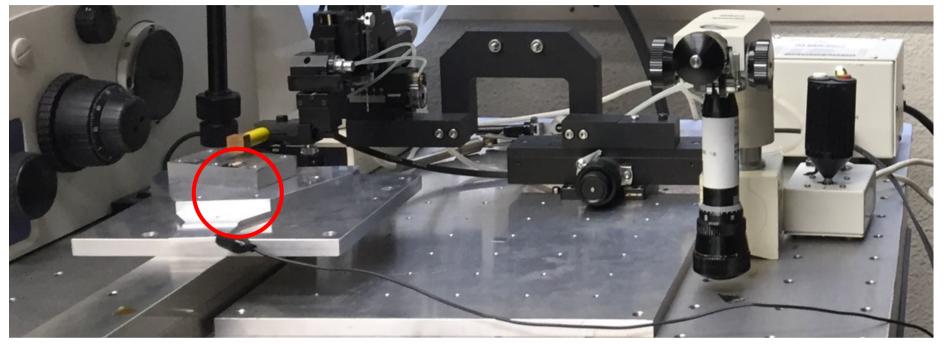


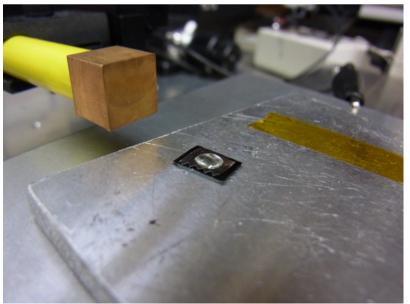
 AL_2O_3

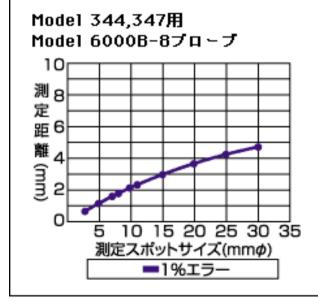

NMEMS Confidential

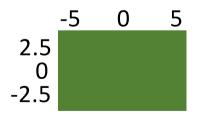




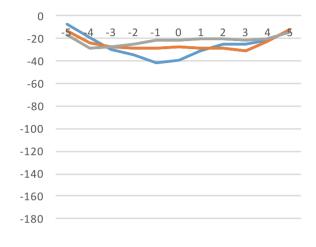



ALD説明動画



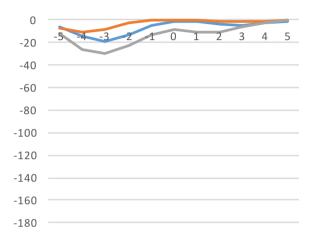

エレクトレット帯電確認実験

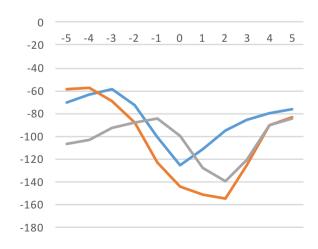
【測定箇所】

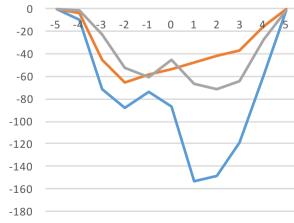


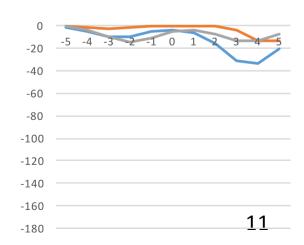
実験結果 (HMDS, F-SUM)

HMDS

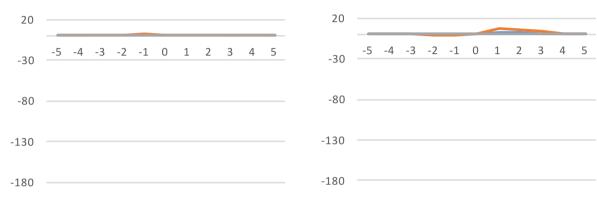

【成膜後】

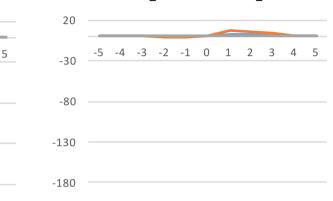

【BT処理後】




【+イオン液体後】

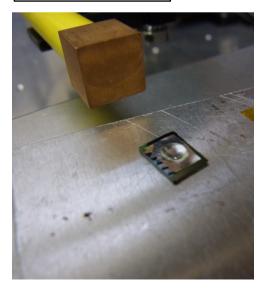
F-SAM

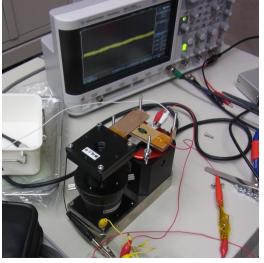


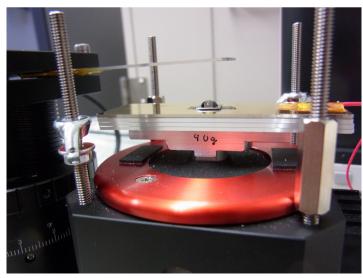


実験結果(ALD_成膜後のみ)

ALD_成膜後

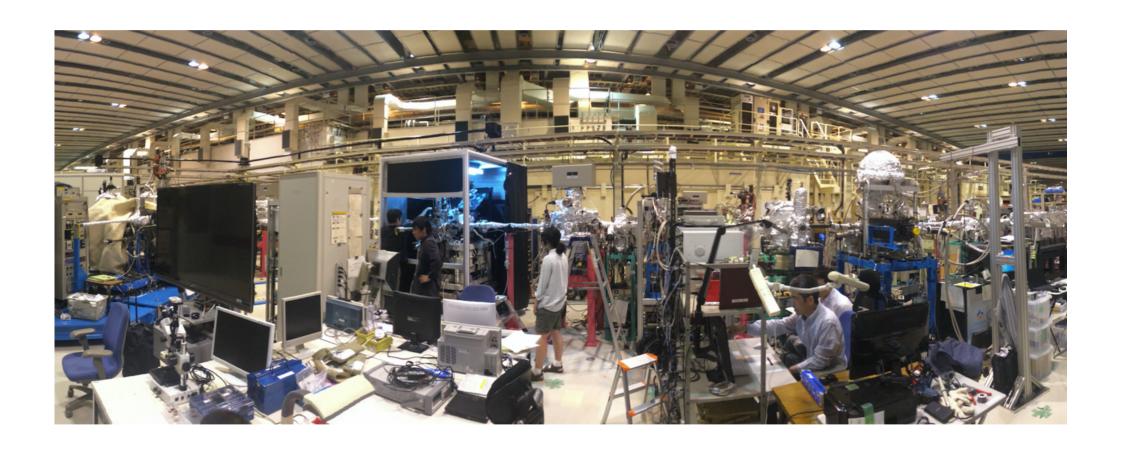

[5 nm] [10 nm]




[20 nm]

20											
-30	-5	-4	-3	-2	-1	0	1	2	3	4	5
-80											
-130											
-180											

発電実験 > 帯電確認後、発電実験をおこなったがいずれも計測できなかった。



Spring-8実験

今後の予定

- イオン液体+固体イオンエレクトレット
 - ➤ 固体イオン保護膜(ALD膜)による帯電劣化防止 技術を確立する.
 - ▶ 統合して1mW級のエナジーハーベスタをめざす。

- ゲル状イオン液体エレクトレット
 - ➤ アニオンの固定(要NDA)の実験を行う.
 - ▶ カチオン、アニオンの固定技術を確立し10Hz以下で500µW級のエナジーハーベスタをめざす。