

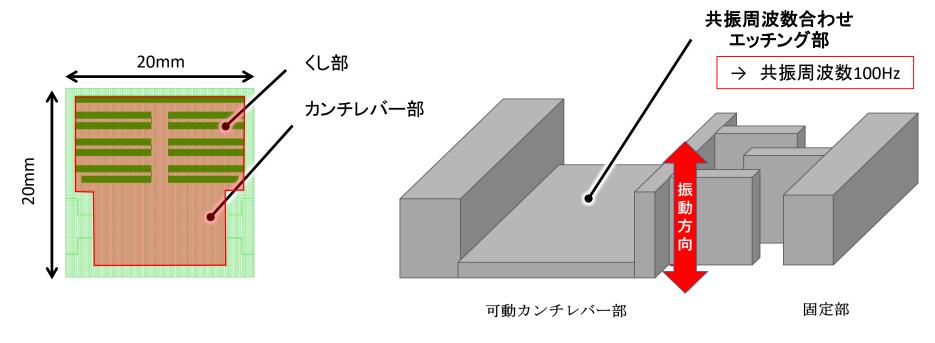
エネルギー・環境新技術先導プログラム/ トリリオンセンサ社会を支える高効率MEMS振動発電 デバイスの研究

平成28年度 第3回高効率MEH研究会

研究項目:①高密度固体イオンエレクトレットの エナジーハーベスタ応用

> 平成28年9月12日(火) 15:00 ~ 17:30

技術研究組合NMEMS技術研究機構(MEH)

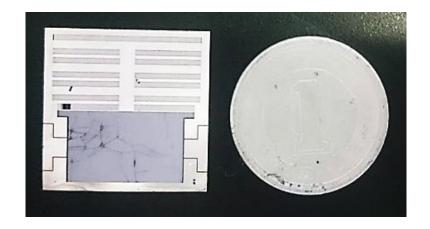


デバイス一覧

	多極型			面外振動型 (カンチレバー 式)	
	1次	2次	3次	1次	2次
全体像			1000 x		
大きさ (mm)	12 x 21.5	15 x 24	15 x 24	15.3 x 34.6	20 x 20
ウェハサイズ (μm)	300 / 2 / 500	200 / 2 / 500	300 / 2 / 525	262 / 2 / 375	262 / 2 / 375
電極数(本)	266	3452	1662	350	1350
最小ギャップ (µm)	10	5	3	12	12
容量差 (pF)	3	4.8	67.5	-	430
電極周期 (μm)	60	60	160	電極重なり 600	電極重なり 630
力係数 (C/m²)	3 x 10 ⁻⁵	1 x 10 ⁻⁴	5 x 10 ⁻⁴	1 x 10 ⁻⁴	5 x 10 ⁻⁴
錘 (g)	2	2	8	3	5.5
周波数 (Hz)	100	100	100	400	100
設計出力(mW)	0.15 (0.06G)	0.15 (0.06G)	1.2 (0.2 G)	1.2 (0.13G、真空中)	1.0 (0.69G)

振動発電素子の開発

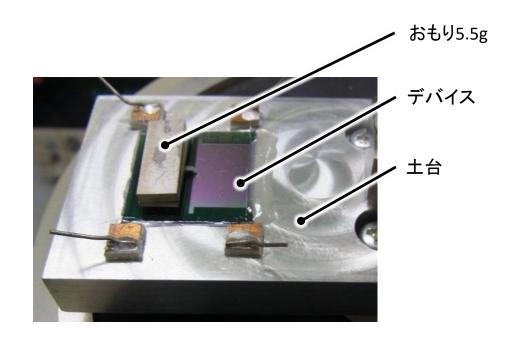
振動発電素子の平面図


カンチレバー部斜視図

目標

1mW振動発電素子の開発

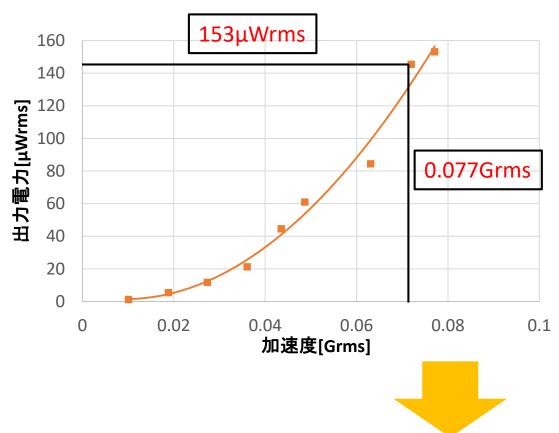
試作デバイス



デバイス外観(1円玉と比較)

デバイス固定部 加振器取り付け部

アルミ土台



パッケージ外観

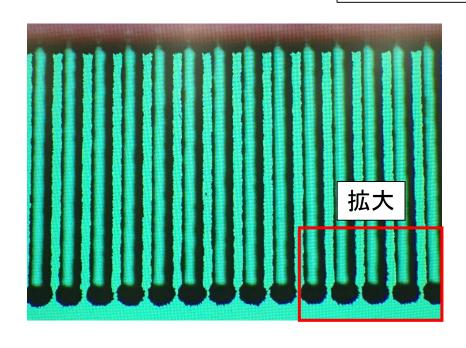
前回の評価結果

出力電力の結果

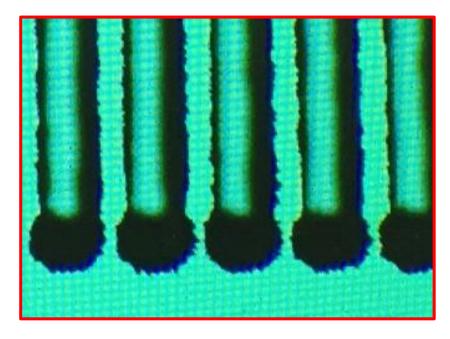
BT処理温度不足

- →50∨帯電(200∨狙い)
- ※評価のため外部電源から 150V印加し、合計200Vで測定

•BT処理温度改善 →出力が大きいヒーター(6.6A→9A)に変更



振動発電素子の再試作結果


•300Vの電圧を印加し、約270V帯電(表面電位)

プルインが発生

くし歯(ハンドル層側から観察)

くし歯拡大図

今後の予定

振動発電素子の再設計・試作

- •マスク設計
 - →くし歯間のギャップ修正
- ・出力評価、充電評価の実施