

「センサ端末同期用原子時計(ULPAC:Ultra-Low Power Atomic Clock)の研究開発」成果発表

国立研究開発法人産業技術総合研究所 計量標準総合センター物理計測標準研究部門 柳町 真也

2017年10月5日幕張メッセ MEMSセンシング&ネットワークシステム展2017

背景とねらい

1

【RIMS概要】

➡ ネットワークを構成するセンサ端末に搭載可能な原子時計(ULPAC)の開発

【ULPACを搭載することで、時刻同期が不要となったRIMSネットワークのメリット】 *橋梁:センシングシステム内の時刻同期性能の向上→より広範囲なデータ処理 *道路付帯構造物:無線同期システムの代替→モニタリングシステム構築の簡略化 *法面:有線同期システムの代替→モニタリングシステム構築の簡略化 *収集サーバ:自律分散的な時刻同期システム→システム運用のセキュリティー強化

【ULPACの利用イメージ】

橋梁センシングの同期しているイメージ図

ULPACによって、各センサーで同じ時 間を保持している。 時刻が同期していることで、構造物全体 の揺れや変動を測定可能となる。

トンネルセンシングの同期しているイメージ図

GPSが届かない環境でも、センサ間の時刻 同期が保証される。

 *時刻同期性能を10年間で、10ms維持。消費電力1mW。サイズ15×15×5mm³。
 → 先行販売されている小型原子時計比で、約3桁の時刻同期性能向上、約2桁の 低消費電力化、1桁のサイズ低減が求められる。

ULPACを実現する研究推進体制

* VCSELとアルカリ原子が封入されたガスセルを用いることで、省スペースで普遍 性の高い固有周波数を参照することが可能となる。

【物理現象と周波数シフト量の関係】

物理現象	パラメータ	周波数 シフト量	相対周波数 シフト量	10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁵
衝突シフト	バファガス分圧 P(=15kPa)	67885 Hz	7.38 × 10 ⁻⁶	
(ガスセル温度 T(=75°C)	1088 Hz	1.18 × 10 ⁻⁷	
ACシュタ ルク効果	レーザー光強度 I(=1800µW/cm²)	570 Hz	6.2 × 10 ⁻⁸	H29年度重点課題 H29年度重点課題
ゼーマン 効果	磁場 B(=14µT)	9.62 Hz	1.05 × 10 ⁻⁹	

*H28年度ULPACプロトタイプの主要条件から推定した値

相対周波数シフト量

RICOH 🧷

【開発技術のポイント】

周波数シフトの温度係数の符号が異なる2種類のバッファ ガスのガスセルへの精密混合封止による温度依存性低減

【成果】

バファガス単独(Ar)と比較し、混合バファガスでは温度依存 β:π 性を100分の1に低減

周波数シフトの温度依存性

$$\Delta \nu = P_0 \left[\beta + \delta (T - T_0) + \gamma (T - T_0)^2 \right]$$

Buffer gas	β(Hz/Pa)	δ(Hz/kPa K)	y(mHz/(kPa*K²))
N2	6.92	6.18	-18.8
Ar	-1.46	-8.54	0.0

 β : 圧力係数 δ : 1次温度係数 γ : 2次温度係数

【H28ULPACプロトタイプ温度特性評価結果】

■ M社 ● 最適化前 ▲ 最適化後

RICOH 🥢

【開発技術のポイント】

ガスセルの小型化により、量子部への真空断熱実装を可能とし、伝熱量を大幅削減。

【成果】

同じ制御電力で、ガスセル温度の精度を1桁改善。

内部構造(40×40×18mm³)

【物理現象と周波数シフト量の関係】

物理現象	パラメータ	周波数 シフト量	相対周波数 シフト量	10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁵
衝突シフト	バファガス分圧 P(=15kPa)	67885 Hz	7.38 × 10 ⁻⁶	
	ガスセル温度 T(=75℃)	1088 Hz	1.18 × 10 ⁻⁷	
ACシュタ ルク効果	レーザー光強度 J(=1800µW/cm²)	570 Hz	6.2 × 10 ⁻⁸	H29年度重点課題 H29年度重点課題
ゼーマン 効果	磁場 B(=14µT)	9.62 Hz	1.05 × 10 ⁻⁹	

*H28年度ULPACプロトタイプの主要条件から推定した値

相対周波数シフト量

RICOH

【開発技術のポイント】

ガスセルの内容積拡大(2.7倍)と、VCSEL-ガスセル間距離の拡大(1.5 倍)による、「レー ザ照射Cs原子数の増大(約2.5倍)」と、それにより可能となる「レーザ照射強度の低減(約 42%低減)」により、1)短期安定度の改善、2)ライトシフト量の低減、を図る。

【成果】

短期安定度は、約3.5倍の改善。ライトシフト量は評価中。

RICOH 🧷

【成果】

- ・H28年度ULPACで、10ms/155日以上を確認し、先行する米国CSACと同等以上を達成
- ・ガスセルで10ms/390日以上を達成。H29年度ULPACで10ms/240日以上を達成の見込み

【物理現象と周波数シフト量の関係】

物理現象	パラメータ	周波数 シフト量	相対周波数 シフト量	10 ⁻¹⁰ 10 ⁻⁹ 10 ⁻⁸ 10 ⁻⁷ 10 ⁻⁶ 10 ⁻⁵
衝突シフト	バファガス分圧 P(=15kPa)	67885 Hz	7.38 × 10 ⁻⁶	
	ガスセル温度 T(=75℃)	1088 Hz	1.18 × 10 ⁻⁷	
ACシュタ ルク効果	レーザー光強度 I(=1800µW/cm²)	570 Hz	6.2 × 10 ⁻⁸	H29年度重点課題 H29年度重点課題 H29年度重点課題
ゼーマン 効果	磁場 B(=14µT)	9.62 Hz	1.05 × 10 ⁻⁹	

*H28年度ULPACプロトタイプの主要条件から推定した値

相対周波数シフト量

低消費電力と低位相雑音を両立したCMOS集積化 PLL回路の開発

15

- 【開発技術のポイント】
 - ・tail-pump型回路を採用することでVCO単体の消費電力を大幅削減
 - ・PLL回路もCMOS集積化することで、消費電力化を大幅削減

【成果】

4.6GHzVCOの消費電力0.65mW、位相雑音-166dBc/Hzの世界最高性能を実現

ULPACプロトタイプで消費電力を検証

【成果】

- ・真空断熱実装により、量子部の消費電力を大幅削減
- ・4.6GHz発振回路をCMOS集積化することで、消費電力でも差別化・システムの最適化で、電力損失を大幅削減
- ・H28年度にULPAC消費電力117mWを達成
- ・H29年度はCMOS集積化4.6GHz発振回路で72mWを達成見込み

平成28年度ULPACプロトタイプ

	CSAC (Microsemi)	ULPAC (H27)	ULPAC (H28)	ULPAC(H 29)見込 み
量子部	11mW	280mW	11mW	11mW
4.6GHz発振回路	52mW	68mW	64mW	18mW
制御回路	49mW	253mW	37mW	36mW
電力損失	13mW	799mW	5mW	7mW
total	125mW	1400mW	117mW	72mW

- 【ULPAC評価用時刻同期モジュールの機能】
- ①時刻同期性能評価機能
 - ・GPSに連動したULPACの初期時刻自動調整機能
 - ・GPS(1PPS)基準のULPAC時刻偏差記録機能
- ② 実証実験環境記録機能
 - ・タイムスタンプ : ULPAC基準(分解能100ns、アナログデータ用)、
 システムクロック基準(分解能1µs、デジタルデータ用)
 - ・設置環境記録機能:加速度/磁気/温度/湿度/圧力(オンボード)

+ α (外部アナログ/デジタルセンサ)

時刻同期モジュールの構成

本研究は国立研究開発法人新エネル ギー・産業技術総合開発機構(NEDO)の 委託研究業務の結果得られた成果です。

ご清聴ありがとうございます。 より詳細はパネル展示スペースにてご説明申し上げます。